Albany: A Trilinos-based code for Ice Sheet Simulations and other Applications

Andy Salinger (SNL)
Irina K. Tezaur, Mauro Perego, Ray Tuminaro & Steve Price (LANL)
Roger Pawlowski, Irina Demeshko, Eric Phipps

Deployment and Application of Technologies provided by the FASTMath Institute

SIAM CSE, March 17, 2015

What is the Albany Code?

- Finite Element Code
 - Implicit
 - Unstructured Grid
 - Massively Parallel

- Demonstrates Component-Based Code design
 - Libraries
 - Abstract Interfaces
 - Pretty good Software Engineering (for CSE)
- Embedded Analysis Capabilities
 - Automatic Differentiation;
 - Sensitivity Analysis; Stability Analysis; Optimization; UQ

Who is the targeted Albany customer base?

Albany is built on Trilinos: Leveraging code, software, and expertise

Analysis Tools (black-box)

Optimization

UQ (sampling)

Parameter Studies

Bayesian Calibration

DAKOTA

Nonlinear Solver

Time Integration

Continuation

Sensitivity Analysis

Stability Analysis

Optimization

UQ Solver

Linear Algebra

Data Structures

Iterative Solvers

Direct Solvers

EigenSolver

Preconditioners

Multi-Level Methods

Mesh Tools

Mesh Database

Mesh I/O

PARTITIONING

Load Balancing

Adaptivity

Derivative Tools

Derivatives

Sensitivities

Adjoints

UQ Propagation

Software Quality

Version Control

Regression Testing

Configure / Build System

Test Harness / Dashboard

Continuous Integration

Utilities

Input File Parser

Parameter List

Memory Management

Discretizations

Discretization Library

Field Manager

NextGen Architectures

Data Structures

Programming Model

SciDAC Institutes and ASCR Support Several Key Components

Analysis Tools (black-box)

Optimization

UQ (sampling)
Parameter Studies

Bayesian Calibration

IDEAS productivity

Software Quality

Version Control

Regression Testing

Configure / Build System

Test Harness / Dashboard

Continuous Integration

Analysis Tools (embedded)

Nonlinear Solver

Time Integration

Continuation

Sensitivity Analysis

Stability Analysis

Optimization

UQ Solver

Utilities

Input File Parser

Parameter List

Memory Management

Linear Algebra

Data Structures

Iterative Solvers

Direct Solvers

EigenSolver

Preconditioners

Multi-Level Methods

Mesh Tools

Mesh Database

Mesh I/O

Partitioning

Load Balancing

Adaptivity

Derivative Tools

Derivatives

Sensitivities

Adjoints

UQ Propagation

Discretizations

Discretization Library

Field Manager

NextGen Architectures

Data Structures

Programming Model

Laboratories

Well-Designed Interfaces make Component-Based Code Design a Scalable Endeavor

Interface Design: What does Albany use for a Mesh Interface?

1. Mesh Interface Design

Application Process Mesh Interface Mesh Database 1 Mesh Database 2

2. Global Discretization Design

Interface Design: Design of Global Discretization Interface

Global Discretization:

- getCoordinates()
- getConnectivity()
- getOwnedUnknownMap()
- getOverlapUnknownMap()
- getJacobianGraph()
- getSolution()
- writeSolution(x)

Global Discretization Design

Albany is the Vehicle for Several Application and Algorithm Projects

QCAD:

Quantum Dot Design

LCM:

- Large Deformation Mechanics
- Failure/Fracture
- Multi-Scale Modeling

Algorithm efforts developed/tested in Albany

- 1. Mesh Adaptive Loop Following Talk -- Granzow
- 2. Embedded UQ
- 3. Adjoint Gradients with AD
- 4. Reduced Order Modeling
- 5. Topological Optimization
- 6. Performance-Portable Finite Element Assembly

FELIX:

• Ice Sheets

Albany/FELIX code is Supported by PISCEES SciDAC

- Unstructured Grid
- •3D, 2 PDEs
- Steady
- Inversion
- Calibration
- Links under ACME Earth System Model

Nonlinear Stokes' Model for Ice Sheet Stresses

$$\begin{split} -\nabla \cdot (2\mu \dot{\epsilon}_1) &= -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\epsilon}_2) &= -\rho g \frac{\partial s}{\partial y} \end{split}$$

Albany/FELIX: Verification and Mesh Convergence

Horiz. res.\vert. layers	5	10	20	40	80
8km	2.0e-1				
4km	9.0e-2	7.8e-2			
2km	4.6e-2	2.4e-2	2.3e-2		
1km	3.8e-2	8.9e-3	5.5e-3	5.1e-3	
500m	3.7e-2	6.7e-3	1.7e-3	3.9e-4	8.1e-5

Albany/FELIX: Weak Scalability

Nonlinear Solvers Robustness is Critical: Land Ice Solver Inside of Climate Model

Ice Sheet Initialization: Invert for Basal Sliding Coefficient to Match Observations

Objective functional:
$$\mathcal{J}(\mathbf{u}(\beta), \beta) = \int_{\Sigma} \frac{1}{\sigma_u^2} |\mathbf{u} - \mathbf{u}^{obs}|^2 ds + \alpha \int_{\Sigma} |\nabla \beta|^2 ds$$

Inverted for 700K Parameters

Developed General Purpose Code for Adjoint-Based Gradients using Automatic Differentiation (Perego, Phipps)

Finite Element Assembly Refactored to use Kokkos Programming Model

Sandia National

Laboratories

Conclusion: The SciDAC Vision Can be Successful

Using many libraries requires good software design and practices.

Albany/FELIX code leverages code (expertise):

- Mulri-Level Preconditioning code and research (Tuminaro)
- Nonlinear Solver code and research (Pawlowski)
- Adjoint-Based Inversion (Perego, Phipps, Ridzal, Kouri)
- Performance-Portable FE Assembly (Demeshko)
- **→**Adaptivity
- **+**Embedded UQ
- →Bayesian Calibration

Acknowledgements: FASTMath, PISCEES, ATDM, OLCF

~30 other Trilinos/Albany/Dakota developers

